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Low symmetry patterns on magnetic fluids

RenéFriedrichs*
FNW/ITP, Otto-von-Guericke-Universita¨t, Postfach 4120, D-39016 Magdeburg, Germany

~Received 26 November 2001; revised manuscript received 6 February 2002; published 20 December 2002!

The pattern formation on the free surface of a magnetic fluid subjected simultaneously to a vertical and a
horizontal magnetic field is investigated theoretically. In this anisotropic system planforms less symmetric then
squares and hexagons arise. The relative stability of parallel ridges and asymmetric patterns, periodic on a
rectangular or a rhombic lattice, is studied using a perturbative energy minimization procedure. Moreover, the
interplay between the anisotropy and the broken up-down symmetry of the system is quantitatively analyzed.
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I. INTRODUCTION

Spontaneous formation of patterns is a quite general p
nomenon in many different fields of physics, for instance,
hydrodynamics, crystal growth, and nonlinear optics. A
cordingly much efforts@1# have been devoted to understa
the universal mechanisms leading to certain patterns. In
tems that are homogeneous andisotropic in two dimensions,
symmetry breaking instabilities result usually in regu
hexagons, squares, or stripes. But also ‘‘superlattice’’ p
terns@2–4# and quasiperiodic structures@5,6# can be found
and have drawn considerable attention in the past years. N
ertheless, often asymmetries are more interesting then s
metries and thus pattern formation inanisotropic systems
came into the focus of nonlinear science. For instance,
convection in nematic liquid crystals with magnetic field w
investigated@7# and in inclined layer convection@8# novel
states were found. Recently, in an anisotropic optical sys
‘‘squeezed’’ hexagons were observed@9#.

The existence of the corresponding nonequilateral p
terns was theoretically discussed in the framework of am
tude equations with broken rotational symmetry@10–12#.
However, these previous investigations focused on the qu
tative aspects and did not consider a concrete physical
tem for which the coefficients of the amplitude equatio
were calculated.

In contrast, in this paper we report a theoretical investi
tion of ‘‘stretched’’ hexagons and stretched squares in a d
nite physical system. It will be shown that in a tilted ma
netic field nonequilateral patterns develop on a magn
fluid. A magnetic fluid is a suspension of ferromagne
nanoparticles in a suitable carrier liquid, which yields a s
perparamagnetic Newtonian fluid@13#. When the free surface
of this ferrofluid is subjected to a vertical magnetic field, t
normal field or Rosensweig instability@14# occurs above a
certain threshold for the field and results in an array of fl
peaks@14,15#. By tilting the magnetic field, the left-righ
symmetry of this system can be broken in a controllable w
This should facilitate a comparison of our predictions w
corresponding experiments.

Our theoretical investigation is a generalization of the
ergy variational method used in Ref.@15#. Near the instabil-
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ity threshold the energy functional of the system may
written as a power series in the amplitude of the surfa
deflection. By minimizing this expansion of the energy w
can quantitativelyinvestigate the formation of the stretche
patterns.

Moreover, due to the left-right asymmetry the arising no
equilateral but periodic patterns lack any point symmetry a
are in this sense the complements of quasiperiodic struct
that are spatially aperiodic but have a definite rotational sy
metry. We present the detailed shape and the stability of
stretched patterns.

In Sec. II the system is introduced and the basic equati
are established. After transforming the equations into a fo
suitable for the energy calculation the outcomes of the p
turbative variational procedure are shown in Sec. III. Sect
IV focuses on the effects of the anisotropy on the bifurcat
structure. The concluding Sec. V contains a summary an
discussion of our results.

II. BASIC EQUATIONS

We consider a magnetic fluid subjected to a tilted ma
netic fieldH0, which in the absence of any magnetic perm
able material is homogeneous and of the formH05HZez
1HXex . The gravitational accelerationg52gez acts paral-
lel to the z axis. The incompressible magnetic fluid wit
infinite depth and densityr, permeabilitym, and surface
tensions has a free surface described byz5z(x,y) with the
magnetically impermeable air above. Our aim is to determ
which static profilez(x,y) develops for a magnetic field
strong enough to destabilize the flat surfacez(x,y)50 of the
fluid.

Stable configurations of the surface with infinite horizo
tal extension are given by minima of the thermodynam
potential per unit area in thex-y plane. This potential com-
prises the hydrostatic energy, the magnetic energy@16#, and
the surface energy, respectively:

f @z~x,y!#5K rg

2
z2~x,y!2

m2m0

2 E
2`

z(x,y)

dzH0H~x,y,z!

1sA11@]xz~x,y!#21@]yz~x,y!#2L . ~1!

Here the brackets denote the average over thex-y plane,m0
©2002 The American Physical Society15-1
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is the permeability of free space, andH(x,y,z) is the mag-
netic field in the presence of the magnetic fluid.

The magnetic fieldsB andH are determined by the stati
Maxwell equations

“•B50 and “3H50, ~2!

together with the appropriate boundary conditions at the fl
surfacez5z(x,y) and the condition

lim
z→1`

H~x,y,z!5HZez1HXex . ~3!

Throughout the paper we will assume the linear relation

B5m0m rH ~4!

between the magnetic induction and the magnetic fie
where m r5m/m0 denotes the relative permeability of th
magnetic fluid.

The two characteristic scales of the problem are the c
cal magnetic field at the onset of the instability,

Hc5A2m r~m r11!Args

m0~m r21!2
, ~5!

and the corresponding critical wave numberkc5Arg/s,
which were first derived in Ref.@14# from a linear stability
analysis. Henceforth we measure all lengths in units of
capillary lengthkc

21 , all wave numbers in units of the criti
cal wave numberkc , and energies per unit area in units
the surface tensions.

Moreover, it is convenient to introduce a dimensionle
scalar magnetic potentialc(x,y,z), defined by H
5(HZ /kc)“c, which has to satisfy the Laplace equation

Dc50 ~6!

in the magnetic fluid and in the air above. Atz5z(x,y) the
continuity of the component ofB normal to the surface an
of the component ofH tangential to the surface requires

m r lim
e→10

@~]xz!]xc1~]yz!]yc2]zc#uz5z2e

5 lim
e→10

@~]xz!]xc1~]yz!]yc2]zc#uz5z1e ~7!

and

lim
e→0

cuz5z2e5 lim
e→0

cuz5z1e , ~8!

respectively. The asymptotic form of the magnetic field
z→1` as specified by Eq.~3! translates into the condition

lim
z→1`

¹c5ez1
HX

HZ
ex . ~9!

Exploiting the fact thatH0 is homogeneous we finally ge
the energyf as a functional of the surface deflectionz
5z(x,y) in the form
06621
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f @z#5K z2

2
2cU

z5z

m r(m r11)HZ
2

(m r21)Hc
2 S 12

HX

HZ
]xz D

1A11(]xz)21(]yz)2L . ~10!

An exact minimization of the energy functionalf @z# is, in
general, impossible due to the rather implicit dependence
the potential c(x,y,z) on the surface deflectionz(x,y)
specified by the boundary conditions~7! and~8!. In order to
make analytic progress, we restrict ourselves to the vicin
of the critical magnetic field and assume that the amplitu
of the surface deflection is still small. It is then possible
expand the energy in this amplitude and to retain only
first terms. In this paper we will consider an expansion of
energy up to fourth order in the amplitude.

Generalizing the perturbation expansions used in R
@15# we write the surface profile in the form

z~x,y!5
1

2 (
n51

17

Anei (kn•r )1c.c., ~11!

where r5(x,y) and k5(kx ,ky) are two-dimensional vec
tors. The wave vectors k15(0,k),k25(2q,0),k35
(2pA3k/2,2k/2), and k45(pA3k/2,2k/2) of the main
modesn51, . . . ,4 areshown in Fig. 1. To allow the wave
numbers of the main modes to deviate from each other
have introduced the additional free parametersk, q, and p.
This extension is essential since the magnetic fieldHX ex-
plicitly breaks the rotational invariance of the energyf, as
can be seen easily from Eq.~10!. In the special casek5q
5p our ansatz allows the description of regular squares
hexagons as they arise from the normal field instability~i.e.,
HX50). In the presence of an additional and sufficien
strong horizontal magnetic field, also fluid ridges~stripes!
with axes parallel to this field appear on the surface@17#.
Accordingly the wave vectork1 is oriented perpendicular to
the horizontal fieldHXex .

In our ansatz~11! the terms withn55, . . . ,17 arehigher
harmonics with wave vectorsk5–k17 being linear combina-
tions of two wave vectors of the main modes. The amp
tudes of these additional modes are of orderO(An

2) in the
main modesn51, . . . ,4. Thehigher harmonics must be in
cluded in the investigation of the weakly nonlinear regim

FIG. 1. Wave vectorsk1 to k4 of the four main modes in the
perturbation ansatz~11!. k1 is perpendicular tok2 and to the hori-
zontal magnetic fieldHXex . k3 andk4 have the same modulus an
satisfy the resonance conditionk11k31k450.
5-2
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LOW SYMMETRY PATTERNS ON MAGNETIC FLUIDS PHYSICAL REVIEW E66, 066215 ~2002!
since they contain information on the deviation from t
simple cosine shape describing the linear instability. Un
the force of a tilted magnetic field~i.e., HXÞ0) such a de-
viation may result in the formation of patterns of asymmet
peaks. This asymmetry of the shape was found earlie
corresponding experiments with a single ferrofluid drop@18#
and is a consequence of the broken left-right symmetryx
→2x, of the energy functionalf with a horizontal field. For
this reason at least the phasesfn with n53, . . . ,17 of the
complex valued and unknown amplitudesAn must be in-
cluded into the set of variational parameters. Due to
translational invariance of the energy functionalf the phases
f1 andf2 can be assumed to be zero.

By means of a suitable ansatz for the magnetic poten
with a similar dependence onx andy asz(x,y) it is possible
to determinec(x,y,z) perturbatively as a function of the fre
parameters$k,q,p,fn ,uAnu%. Using Eq.~10! we then calcu-
late the energy as a function of these variational parame
up to the fourth order in the main amplitudes. The minim
zation in the higher-order amplitudesAn with n.4 can be
performed explicitly, and after introducing the supercritic
ity parameter

e5
HZ

2

Hc
2

21, ~12!

we finally arrive at

f 52 1
2 $ l 1~e!uA1u21 l 2~e!uA2u21 l 3~e!@ uA3u21uA4u2#%

2 1
2 g@A1A3A41A1* A3* A4* #1 1

4 ~g1uA1u41g2uA2u4

1g3@ uA3u41uA4u4# !1 1
2 g1,2uA1u2uA2u2

1 1
2 g1,3uA1u2@ uA3u21uA4u2#1 1

2 g3,4uA3u2uA4u2

1 1
2 g2,3uA2u2@ uA3u21uA4u2#. ~13!

The coefficients of this expansion are functions ofm r , HX
2 ,

and the variational parametersk,q, andp. The analytic ex-
pressions are too long to be stated here and are there
given in Ref.@19#. Due to the complicated dependence of t
coefficients on the wave numbers, our result for the ene
f (k,q,p,A1, . . . ,4) has to be minimized numerically.

III. RESULTS

Exemplarily some resulting surface profiles are display
in Fig. 2. In the case of the normal field instability, either
square or a hexagonal pattern of fluid peaks arise for o
critical magnetic fields. If the magnetic fluid is, in contra
subjected simultaneously to an overcritical vertical and
horizontal field, our analysis reveals that stable surface p
files are less symmetric. Then the energyf attains a minimum
at uA1u.A25A35A450 ~parallel ridges! or at uA1u.uA2u
.A35A450 ~two-mode solution! and atuA1u.uA3u5uA4u
.A250 ~three-mode solution!. For these solutions the am
plitude A1 is always larger then the amplitudes of the oth
main modes since the horizontal field depresses the m
n52, . . . ,4. Thus the corresponding patterns have neit
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fourfold nor threefold rotational symmetry.
Moreover, in Fig. 2 the solutions with two~b! and three

~d! main modes are stretched in the direction of the horiz
tal magnetic field. This is a result of the minimization inq
andp, which leads in all cases withHXÞ0 to values smaller
thenk'1 for q andp. Accordingly the two-mode solution is
merely periodic on a rectangular lattice and the three-m
solution on a rhombic lattice.

The peaks arising in the presence of a horizontal field~see
Fig. 3! lack also the left-right symmetry,x→2x. As ex-
pected the fluid peaks are tilted roughly parallel to the m

FIG. 2. Stable surface profiles of a magnetic fluid with relati
permeability m r51.3 for different magnetic fields. High surfac
regions are brighter. For the vertical fieldHZ51.017Hc the square
pattern ~a! is stable. The superpositionHZ51.017Hc and HX

50.15Hc leads to pattern~b!, which is periodic on a rectangula
lattice. The hexagonal pattern~c! arises forHZ51.014Hc . The pro-
file ~d! results fromHZ51.014Hc andHX50.15Hc and is periodic
on a rhombic lattice.lc52p/kc is typically of the order of 10 mm.

FIG. 3. Cross sectionz(x,y50) through the surface profile
shown in Figs. 2~c! and 2~d!. The normal field instabilityHZ

51.014Hc ~dashed line! results in symmetric fluid peaks. In th
tilted field HZ51.014Hc andHX50.15Hc ~full line! the peaks are
asymmetric and their mutual distance is larger. Moreover, the t
amplitude of the surface deflection increases due to the enla
absolute valueH0 of the magnetic field.
5-3
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RENÉ FRIEDRICHS PHYSICAL REVIEW E66, 066215 ~2002!
netic fieldH0. This is related to the fact that the transform
tion HX /HZ→2HX /HZ requires the simultaneous reflectio
z(x,y)→z(2x,y) to leave the energyf unchanged, wherea
f is invariant under the inversionH0→2H0. Hence the
shapez(x,y) depends on the sign ofHX /HZ but the stability
of a solution is determined only by the absolute values ofHX
andHZ .

To predict whether an asymmetric pattern or para
ridges will show up for a particular magnetic fieldH0 we
address the pattern selection problem by studying the c
acter of the extremum of the energy functional~10! at the
two-mode, three-mode, and ridge solutions. The resul
stability regions in the vicinity of the critical fieldHZ'Hc
for a fluid with relative permeabilitym r51.3 are displayed in
Fig. 4. For instance, in the normal magnetic fieldHZ
51.014Hc at first a hexagonal pattern shows up~c!. If, addi-
tionally, a horizontal magnetic fieldHX50.15Hc is applied,
the regular hexagons are deformed and a pattern periodi
a rhombic lattice appears~d!. An increase of the horizonta
field up toHX50.21Hc destabilizes this three-mode solutio
and leads to a two-mode solution which is periodic on
rectangular lattice. A further increase ofHX eventually re-
sults in ridges parallel to the horizontal field. In contrast, d
to an enlarged vertical fieldHZ these ridges may becom
unstable and split up into peaks, which are again arrange
a rectangular or rhombic lattice. Thus ridges lose their s
bility in a sufficiently strong vertical magnetic field, where
both two-dimensional structures can be destabilized by
creasing the horizontal field induced anisotropy.

On the other hand in Fig. 5 particularly the stability r
gion of the three-mode solution is reduced by decreasing
parameterm r , which rules the up-down symmetry breakin
in the system. To show that the relative permeabilitym r de-
termines whether the arising peaks~the center of the cells!

FIG. 4. Stability regions in theHX-HZ plane for a fluid with
m r51.3. Ridges~R! are stable in the region hatched with stripes a
the two-mode solution (2M ) is stable in the crosshatched region.
the area to the left of the thick line the three-mode solution (3M ) is
stable. Note that in certain sections of this area the system
bistable. The triangles and squares indicate the field combinat
leading to the profiles shown in Fig. 2.
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point upward or downward we consider the situation witho
a horizontal field: Keeping in mind thatHc

2(1/m r)
5Hc

2(m r)/m r it can be seen from Eq.~10! that the energyf is
only invariant under the combined transformationz(x,y)→
2z(x,y) and m r→1/m r . Note that with this transformation
the magnetic potentialc(x,y,z) has to be replaced by
2m rc(x,y,2z) since the condition~7! changes accordingly

From the stability chart in Fig. 5 it can be seen that w
reproduce the classical result for the stability of squares
hexagons@15#, which was obtained only for a vertical fiel
and fluids with small permeabilityum r21u!1. But for the
corresponding values ofm r we found that a slight declination
of the magnetic fieldH0 causes a remarkable reduction of t
stability margins of the two-dimensional patterns, especia
of the three-mode solution.

IV. BIFURCATIONS

In this section we consider the diverse bifurcation s
narios of the system to show that the transitions between
patterns are changed by the horizontal magnetic field.
general bifurcation structure of distorted or nonequilate
hexagons was studied in Ref.@12# using the center manifold
reduction technique. To demonstrate the ‘‘unfolding’’ of th
transcritical bifurcation we have determined for three diffe
ent situations the surface deflectionz(0,0) as a function of
the supercriticality parametere. Since the surface profile
z(x,y) were calculated under consideration of the high
harmonics, the following bifurcation diagrams are not mirr
symmetric for all solutions. This results from the broken u
down symmetryz(x,y)→2z(x,y) of the system.

The familiar bifurcation scenario for a fluid in a strictl
vertical magnetic field is displayed in Fig. 6. In the diagra

is
ns

FIG. 5. The same as Fig. 4 but for a fluid withm r51.03. Due to
the smaller relative permeability, the parameter which rules the
down symmetry breaking, the stability region of the three-mo
solution shrinks. The dashed line indicates the limit between
stability regions of the two-mode and the ridge solution as th
result, if a variation of the wave numbersk, q, andp is not taken
into account.
5-4
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the range of the supercriticality parametere corresponds to
0.9985,HZ /Hc,1.0025 in Fig. 4 (HX /Hc50). At e50 the
trivial solution splits up by two supercritical pitchfork bifur
cations into unstable two-mode solutions and unsta
ridges. In contrast, the unstable three-mode solutions ap
at a transcritical bifurcation. But only hexagons with flu
peaks pointing upward are stable. The corresponding st
branch disappears together with the unstable branch of
three-mode solutions for subcritical fieldsHZ,Hc at a
saddle-node bifurcation. The dependence of the surface
flection z(0,0) of the hexagonal patterns shifted bylc /k in
they-direction can be calculated by changing simultaneou
the sign of the amplitudesA3 and A4. These three-mode
solutions are topological identical to the unshifted hexago

In Fig. 7 the bifurcation scenario is clearly changed by
additional horizontal fieldHX50.065Hc . At e50 only
ridges appear from the trivial solution at a supercritical pitc
fork bifurcation. The corresponding solutions are initia
stable but lose stability at a subcritical pitchfork bifurcati
to the three-mode solutions. For larger values ofHZ the un-
stable branch of the ridges splits up at a supercritical pit
fork bifurcation into two unstable two-mode solutions, whi
are both identical except for a translation bylc /(2q) in the
x direction. Since the three-mode solutions bifurcate subc
cally, the ridges and the three-mode solutions are simu
neously stable in a certain region~cf. Fig. 4!.

For magnetic fluids with small permeability the impact
the horizontal magnetic field becomes even more p
nounced. In Fig. 8 two separate intervals for the vertical fi
HZ exist, in which ridges are stable. For the fluid withm r
51.03 the ridges lose stability to the three-mode solution
a supercritical pitchfork bifurcation. A corresponding chan

FIG. 6. Bifurcation diagram for a magnetic fluid withm r51.3 in
the absence of a horizontal magnetic field (HX50). The depen-
dence of the surface deflectionz(0,0) on the supercriticality param
etere5HZ

2/Hc
221 is shown. Solid lines indicate stable surface p

files and dashed lines indicate unstable solutions. The st
hexagons have in their center fluid peaks pointing upward.
curve which belongs to the shifted hexagons describes the de
tion z(0,0), if the three-mode solution is displaced by one wa
lengthlc /k in the y direction.
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from a subcritical to a supercritical bifurcation due to a d
crease of the permeabiltym r was also found in Refs.@20,21#.
The three-mode solutions lose stability at a saddle-node
furcation and rejoin the ridge branch, at which point t
ridges regain stability. Eventually stable two-mode solutio
bifurcate from the ridge branch. For horizontal fieldsHX
,0.0273Hc this supercritical pitchfork bifurcation take

-
le
e
c-
-

FIG. 7. Bifurcation diagram for the same fluid as in Fig. 6 but
the presence of a tilted magnetic field. Due to the horizontal field
the constant valueHX50.065Hc , parallel ridges are stable fo
weakly supercritical fieldsHZ . The lower branch of the ridge solu
tions splits up at the point marked with the triangle. Since t
branch describes the depth of the valleys between the ridge
simply the patterns displaced bylc /(2k) in the y direction its fur-
ther bifurcations can be deduced from the upper part of the diagr

FIG. 8. Bifurcation diagram for a magnetic fluid with sma
permeabilitym r51.03 in the presence of a tilted field. In the co
sidered case with the horizontal magnetic fieldHX50.0273Hc , par-
allel ridges are stable both for weakly supercritical fields and
fields HZ'1.0039Hc ~cf. Fig. 5!. Due to the small relative perme
ability the three-mode solutions bifurcate supercritically from t
ridges.
5-5
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RENÉ FRIEDRICHS PHYSICAL REVIEW E66, 066215 ~2002!
place before the three-mode solutions rejoin the ridge bra
so that a direct transition from a three-mode solution to
two-mode solution can be observed~cf. Fig. 5!.

V. DISCUSSION

In this paper we have theoretically investigated the patt
formation on a magnetic fluid subjected to a homogene
magnetic field with arbitrary orientation. In contrast to pr
vious theoretical papers@10–12#, in which the existence o
nonequilateral patterns was deduced from model amplit
equations, we have studied the formation of stretched
terns by means of an energy minimization principle. O
quantitative results can be compared directly with cor
sponding experiments.

We have shown that the magnetic field induced surf
instability can result in parallel ridges and patterns perio
on a hexagonal, rhombic, square, or rectangular lattice. T
rich spectrum of patterns and the fact that it can be explo
by varying just the parameter of anisotropy, i.e., the horiz
tal magnetic field, is to our knowledge unique. Solely t
transition from hexagons via rhomboids to stripes could
demonstrated so far in an anisotropic optical system@9#.

In addition, we have found that the patterns that
stretched in the direction of the horizontal magnetic fie
lack any ~nontrivial! rotational symmetry. For that reaso
these deformed but strictly periodic structures can be view
as the counterparts of quasiperiodic patterns@5,6#. Unfortu-
nately our weakly nonlinear analysis is restricted to the
vestigation of slightly deformed patterns in a moderat
tilted field. Though it is well known that a horizontal mag
netic field retards deformations of the flat surface of a m
netic fluid @13,22#, the peaks resulting from the normal fie
instability become larger if they are subjected additionally
a horizontal field~see Fig. 3!. This nonlinear effect basically
sets the limits of the presented perturbative investigat
Nevertheless our study indicates that very oblique magn
fields may result in highly stretched patterns.

Moreover, our analysis reveals the role of the up-do
symmetry breaking in the anisotropic system. We have fo
a strong dependence of the pattern selection on the rela
permeabilitym r of the magnetic fluid~cf. Figs. 4 and 5!. In
particular, for um r21u!1 the stability of the patterns i
rather susceptible to perturbations of the isotropy. We the
hy

n
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fore conclude that even a slight disturbance of the rotatio
symmetry of a pattern forming system may lead to un
pected planforms, especially if the up-down symmetry of
system is only weakly broken. This is quite relevant, sin
the up-down symmetry breaking coefficient in the amplitu
equations describing a pattern selection problem is usu
assumed to be small.

The diverse bifurcation scenarios additionally demo
strate how the transitions between patterns are influence
the horizontal magnetic field. The corresponding effects
anisotropy on the general bifurcation structure of distor
hexagonal patterns were found earlier in Ref.@12#. In a
complementary study of a specific anisotropic system,
bifurcations of patterns during directional solidification we
addressed@23#. However, the pattern forming system inve
tigated in the present paper has the considerable advan
that a very precise measuring and tuning of the param
that rules the up-down asymmetry, i.e., the relative perm
ability, and the parameter that rules the left-right asymme
i.e., the horizontal magnetic field, should be feasible.

Finally, we note that in Fig. 3 the asymmetric peaks lo
similar to the drifting peaks discussed in Ref.@18#. Thus we
close with the interesting question of whether the interplay
dissipation, the up-down asymmetry, and the left-right asy
metry caused by the tilted field can generate tw
dimensional drifting patterns. For compressible magnetoc
vection in an oblique magnetic field it was shown that t
combination of these asymmetries gives rise to travel
waves @24,25#. A possible modification of the static setu
considered in the present paper to a dynamic system m
be a parametrically driven magnetic fluid in a vibrated ves
@26# or a modulated magnetic field@4#. To describe these
nonequilibrium systems our variational approach has to
extended taking into account the influence of inertia a
damping@18,27#.
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