PHYSICAL REVIEW E 66, 066215 (2002

Low symmetry patterns on magnetic fluids
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The pattern formation on the free surface of a magnetic fluid subjected simultaneously to a vertical and a
horizontal magnetic field is investigated theoretically. In this anisotropic system planforms less symmetric then
squares and hexagons arise. The relative stability of parallel ridges and asymmetric patterns, periodic on a
rectangular or a rhombic lattice, is studied using a perturbative energy minimization procedure. Moreover, the
interplay between the anisotropy and the broken up-down symmetry of the system is quantitatively analyzed.
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[. INTRODUCTION ity threshold the energy functional of the system may be
written as a power series in the amplitude of the surface
Spontaneous formation of patterns is a quite general phegeflection. By minimizing this expansion of the energy we
nomenon in many different fields of physics, for instance, incan quantitativelyinvestigate the formation of the stretched
hydrodynamics, crystal growth, and nonlinear optics. Ac-patterns.
cordingly much effort§1] have been devoted to understand Moreover, due to the left-right asymmetry the arising non-
the universal mechanisms leading to certain patterns. In sy&quilateral but periodic patterns lack any point symmetry and
tems that are homogeneous adsotropicin two dimensions, ~are in this sense the complements of quasiperiodic structures
symmetry breaking instabilities result usually in regularthat are spatially aperiodic but have a definite rotational sym-
hexagons, squares, or Stripes_ But also “Super|attice” patmetry. We present the detailed shape and the stability of the
terns[2—4] and quasiperiodic structur¢s,6] can be found stretched patterns.
and have drawn considerable attention in the past years. Nev- In Sec. Il the system is introduced and the basic equations
ertheless, often asymmetries are more interesting then syrﬁfe established. After transforming the equations into a form
metries and thus pattern formation amisotropic systems suitable for the energy calculation the outcomes of the per-
came into the focus of nonlinear science. For instance, thtyrbative variational procedure are shown in Sec. Ill. Section
convection in nematic liquid crystals with magnetic field was!V focuses on the effects of the anisotropy on the bifurcation
investigated[7] and in inclined layer convectiof8] novel  structure. The concluding Sec. V contains a summary and a
states were found. Recently, in an anisotropic optical systerfliscussion of our results.
“squeezed” hexagons were observid.

The existence of the corresponding nonequilateral pat- Il. BASIC EQUATIONS
terns was theoretically discussed in the framework of ampli- ) , ) , ,
tude equations with broken rotational symmeft0—13. We consider a magnetic fluid subjected to a tilted mag-

However, these previous investigations focused on the qualPetic fieldHo, which in the absence of any magnetic perme-
tative aspects and did not consider a concrete physical sy&ble material is homogeneous and of the fofp=Hze,
tem for which the coefficients of the amplitude equationst Hx& . The gravitational acceleratiag= — ge, acts paral-
were calculated. lel to the z axis. The incompressible magnetic fluid with

In contrast, in this paper we report a theoretical investigainfinite depth and density, permeability x, and surface
tion of “stretched” hexagons and stretched squares in a defitensiono has a free surface described by {(x,y) with the
nite physical system. It will be shown that in a tilted mag- Magnetically impermeable air above. Our aim is to determine
netic field nonequilateral patterns develop on a magneti¥hich static profile{(x,y) develops for a magnetic field
fluid. A magnetic fluid is a suspension of ferromagneticStrong enough to destabilize the flat surfg¢e,y) =0 of the
nanoparticles in a suitable carrier liquid, which yields a su-fluid. . . o )
perparamagnetic Newtonian fluiti3]. When the free surface Stable gonflguratl_ons of the_sgrface with infinite horlzon_-
of this ferrofluid is subjected to a vertical magnetic field, thet@l extension are given by minima of the thermodynamic
normal field or Rosensweig instabilifl4] occurs above a Potential per unit area in the-y plane. This potential com-
certain threshold for the field and results in an array of fluidPrises the hydrostatic energy, the magnetic ent@y, and
peaks[14,15. By tilting the magnetic field, the left-right the surface energy, respectively:
symmetry of this system can be broken in a controllable way. g B ()
This should facilitate a comparison of our predictions with fLExy)]= p—gz(x,y)—'u “OJ dzHoH(x,Y,2)
corresponding experiments. 2 2 —

Our theoretical investigation is a generalization of the en-

ergy variational method used in R¢L5]. Near the instabil- + oI [ LOGY) P+ 9L (X y)]2> (1)
X i) y ’ .

*Email address: rene.friedrichs@physik.uni-magdeburg.de Here the brackets denote the average ovexthieplane,ug
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is the permeability of free space, abt{x,y,z) is the mag-
netic field in the presence of the magnetic fluid.

The magnetic field8 andH are determined by the static
Maxwell equations

V.B=0 and VXH=0, 2)

together with the appropriate boundary conditions at the fluid

surfacez={(x,y) and the condition

lim H(x,y,z)=H,e,+Hye,. 3

Z—+»
Throughout the paper we will assume the linear relation

B=popuH (4)

between the magnetic induction and the magnetic field,

where u, = u/ g denotes the relative permeability of the
magnetic fluid.

The two characteristic scales of the problem are the criti-

cal magnetic field at the onset of the instability,

oo \/ZMr(Mr+ 1)Vpgo
=

po( = 1)2

, )

and the corresponding critical wave number=/pg/o,
which were first derived in Ref.14] from a linear stability
analysis. Henceforth we measure all lengths in units of th
capillary Iengthkc_l, all wave numbers in units of the criti-
cal wave numbek., and energies per unit area in units of
the surface tensionr.
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FIG. 1. Wave vectork, to k, of the four main modes in the
perturbation ansat@ll). k; is perpendicular tdk, and to the hori-
zontal magnetic fieldHye, . k3 andk, have the same modulus and
satisfy the resonance condititq+kz+k,=0.

_ g_z_ /-Lr(/-Lr+1)H§< _& )
f[g]_< 2 z=¢{ (/Jvr_l)Hg ' Hzaxg
1+ (0,0 7+ (ay£)2> : (10

An exact minimization of the energy functiondl{] is, in
general, impossible due to the rather implicit dependence of
the potential ¢(x,y,z) on the surface deflectiord(x,y)
specified by the boundary conditiofig) and(8). In order to
make analytic progress, we restrict ourselves to the vicinity
of the critical magnetic field and assume that the amplitude
of the surface deflection is still small. It is then possible to

%xpand the energy in this amplitude and to retain only the

first terms. In this paper we will consider an expansion of the
energy up to fourth order in the amplitude.
Generalizing the perturbation expansions used in Ref.

Moreover, it is convenient to introduce a dimensionless[15] we write the surface profile in the form

scalar magnetic potentialy(x,y,z), defined by H
=(Hz/ky) V¢, which has to satisfy the Laplace equation

Ay=0 (6)

in the magnetic fluid and in the air above. &t /(x,y) the
continuity of the component d normal to the surface and
of the component oH tangential to the surface requires

ey i [(058) dxip+ (0y L) dyth— 0pth]| 1= r— e

e—+0

= lim [((9x§)<?xl//+(ﬁy€)0y¢—5z$]|z=g+e (7

e—+0
and

lim l//|Z:§75: lim lv[/|Z:§+5! (8)

e—0 e—0

17
1 )
{xy)=5 > Ak Drcc, (11)
n=1

wherer=(x,y) and k=(k,,k,) are two-dimensional vec-
tors. The wave vectors k;=(0k),k,=(—q,0),ks;=
(—py3k/2,—k/2), and k,=(p3k/2,—k/2) of the main
modesn=1, ... ,4 areshown in Fig. 1. To allow the wave
numbers of the main modes to deviate from each other we
have introduced the additional free parameters, and p.
This extension is essential since the magnetic fiéjdex-
plicitly breaks the rotational invariance of the eneifgyas

can be seen easily from ELO). In the special cask=q

=p our ansatz allows the description of regular squares and
hexagons as they arise from the normal field instabiligy.,
Hy=0). In the presence of an additional and sufficiently
strong horizontal magnetic field, also fluid ridgestripes

respectively. The asymptotic form of the magnetic field forwith axes parallel to this field appear on the surfate].

z— +0 as specified by Eq.3) translates into the condition

. Hx
lim Vy=e,+ —e,. 9
Hz

Z— +»

Exploiting the fact thaH, is homogeneous we finally get
the energyf as a functional of the surface deflectigh
={(x,y) in the form

Accordingly the wave vectdk; is oriented perpendicular to
the horizontal fieldH ke, .

In our ansat411) the terms withn=5, ... ,17 arehigher
harmonics with wave vectoilss—k,; being linear combina-
tions of two wave vectors of the main modes. The ampli-
tudes of these additional modes are of or@m)?2) in the
main modes=1, ... ,4. Thehigher harmonics must be in-
cluded in the investigation of the weakly nonlinear regime
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since they contain information on the deviation from the (a) (b)
simple cosine shape describing the linear instability. Under
the force of a tilted magnetic field.e., Hx#0) such a de-
viation may result in the formation of patterns of asymmetric
peaks. This asymmetry of the shape was found earlier in ¢
corresponding experiments with a single ferrofluid dfbd) < 0
and is a consequence of the broken left-right symmetry, &
— —X, of the energy functiondlwith a horizontal field. For -1
this reason at least the phasgs with n=3,...,17 of the

complex valued and unknown amplitudds must be in- -2
cluded into the set of variational parameters. Due to the -2 (©) -1 0 1
translational invariance of the energy functioh#the phases 2

¢4, and ¢, can be assumed to be zero.

By means of a suitable ansatz for the magnetic potential
with a similar dependence onandy as{(x,y) it is possible 5
to determinaj(x,y,z) perturbatively as a function of the free < o
parametergk,q,p, én,|Aq}. Using Eq.(10) we then calcu- >
late the energy as a function of these variational parameter  _4
up to the fourth order in the main amplitudes. The minimi-
zation in the higher-order amplitudés, with n>4 can be
performed explicitly, and after introducing the supercritical-

1

-2 -1 0 1

ity parameter X/ho
H% FIG. 2. Stable surface profiles of a magnetic fluid with relative
€= F_ly 12 permeability u,= 1.3 for different magnetic fields. High surface
c regions are brighter. For the vertical figtt,=1.01H the square

pattern (a) is stable. The superpositiohl;=1.01H, and Hyx
=0.13, leads to patterrib), which is periodic on a rectangular
lattice. The hexagonal patte(o) arises forH,=1.014H.. The pro-
file (d) results fromH,=1.014H. andHyx=0.19. and is periodic

we finally arrive at

f=—3{l1(e)|A|?+15(e)| A2 +13(e)[|Ag?+| AT}

_ % y[A1A3A4+A’l‘ A’3‘ AZ 1+ %(91|A1|4+ 92|A2|4 on a rhombic latticex .= 27/K, is typically of the order of 10 mm.
4 47y 1 2|p |2 .
+ 93l Ag*+ A4 *]) + 3 91 AL|%| A fourfold nor threefold rotational symmetry.
41 Adl2TALI2+ A2+ 2 A-2IA, |2 Moreover, in Fig. 2 the solutions with tw@) and three
2 9 A TIAS H AT +2 3l Asl 1A (d) main modes are stretched in the direction of the horizon-
+3 924 AL | AsP+ | A 2] (13)  tal magnetic field. This is a result of the minimizationdn
andp, which leads in all cases witHy# 0 to values smaller
The coefficients of this expansion are functionsugf Hy,  thenk~1 for g andp. Accordingly the two-mode solution is

and the variational parameteksg, andp. The analytic ex- merely periodic on a rectangular lattice and the three-mode
pressions are too long to be stated here and are therefoselution on a rhombic lattice.

given in Ref.[19]. Due to the complicated dependence of the The peaks arising in the presence of a horizontal figde
coefficients on the wave numbers, our result for the energ¥ig. 3) lack also the left-right symmetryx— —x. As ex-

f(k,q,p,A; .. 2 has to be minimized numerically. pected the fluid peaks are tilted roughly parallel to the mag-

Il. RESULTS 0.2 T T g T y T T

) ) . ) | ( ~\ <;(le=0) 7
Exemplarily some resulting surface profiles are displayed A . /\ /A
in Fig. 2. In the case of the normal field instability, either a S 0 pz? N2 N2 Ny
square or a hexagonal pattern of fluid peaks arise for over- - p=1.3 1
critical magnetic fields. If the magnetic fluid is, in contrast, _0.2 . 1 . 1 . 1 .
subjected simultaneously to an overcritical vertical and a -2 -1 x?x 1 2
(o]

horizontal field, our analysis reveals that stable surface pro-

files are less symmetric. Then the (_anefgtytams a minimum FIG. 3. Cross sectio(x,y=0) through the surface profiles

at |Ay|>A;=A3=A,=0 (parallel ridges or at |A;|>|Az|  ghown in Figs. &) and Zd). The normal field instabilityH,
>A3=A,=0 (two-mode solutionand at|Ay|>|As|=[Asl  —1.0144, (dashed ling results in symmetric fluid peaks. In the
>A,=0 (three-mode solution For these solutions the am- jjted field H,=1.0144, andHy=0.15H, (full line) the peaks are
plitude A, is always larger then the amplitudes of the otherasymmetric and their mutual distance is larger. Moreover, the total
main modes since the horizontal field depresses the modesnplitude of the surface deflection increases due to the enlarged
n=2,...,4. Thus the corresponding patterns have neithembsolute valugd, of the magnetic field.
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FIG. 4. Stability regions in thédy-H, plane for a fluid with FIG. 5. The same as Fig. 4 but for a fluid with=1.03. Due to
w=1.3. RidgesR) are stable in the region hatched with stripes andine smaller relative permeability, the parameter which rules the up-
the two-mode solution (i) is stable in the crosshatched region. In yown symmetry breaking, the stability region of the three-mode
the area to the left of the thick line the three-mode solutioM}3s  sojution shrinks. The dashed line indicates the limit between the

stable. Note that in certain sections of this area the system igtapility regions of the two-mode and the ridge solution as they
bistable. The triangles and squares indicate the field combinationggylt, if a variation of the wave numbeksg, andp is not taken
leading to the profiles shown in Fig. 2. into account.

netic fieldHq. This is related to the fact that the transforma-
tion Hy /H,— —Hy/H; requires the simultaneous reflection
{(x,y)—¢(—X,y) to leave the energlyunchanged, whereas

f is invariant under the inversioly,— —H,. Hence the \ ! , .
shape?(x,y) depends on the sign &f, /H,, but the stability only invariant under the combined transformatigix,y) —

of a solution is determined only by the absolute valueslof ¢(x.y) and p,— 1/, Note that with this transformation
andH, . the magnetic potentiaky(x,y,z) has to be replaced by

mb(X,y,—z) since the conditiori7) changes accordingly.
From the stability chart in Fig. 5 it can be seen that we
eproduce the classical result for the stability of squares and
exagong 15], which was obtained only for a vertical field
nd fluids with small permeabilitju,—1|<1. But for the
orresponding values @f, we found that a slight declination

of the magnetic fieldd, causes a remarkable reduction of the

stability margins of the two-dimensional patterns, especially

of the three-mode solution.

point upward or downward we consider the situation without
a horizontal field: Keeping in mind thatH 5(1/,ur)
= Hg(,ur)/,u,r it can be seen from E@10) that the energy is

To predict whether an asymmetric pattern or parallel
ridges will show up for a particular magnetic field, we
address the pattern selection problem by studying the cha
acter of the extremum of the energy functioria0) at the
two-mode, three-mode, and ridge solutions. The resultin
stability regions in the vicinity of the critical fieltH,~H,
for a fluid with relative permeability.,= 1.3 are displayed in
Fig. 4. For instance, in the normal magnetic fiett,
=1.014, at first a hexagonal pattern shows (gp. If, addi-
tionally, a horizontal magnetic fieltllx=0.15H is applied,
the regular hexagons are deformed and a pattern periodic on
a rhombic lattice appear@l). An increase of the horizontal
field up toHx=0.21H . destabilizes this three-mode solution  In this section we consider the diverse bifurcation sce-
and leads to a two-mode solution which is periodic on anarios of the system to show that the transitions between the
rectangular lattice. A further increase Hffy eventually re- patterns are changed by the horizontal magnetic field. The
sults in ridges parallel to the horizontal field. In contrast, duegeneral bifurcation structure of distorted or nonequilateral
to an enlarged vertical fieltH, these ridges may become hexagons was studied in R¢1L2] using the center manifold
unstable and split up into peaks, which are again arranged orduction technique. To demonstrate the “unfolding” of the
a rectangular or rhombic lattice. Thus ridges lose their statranscritical bifurcation we have determined for three differ-
bility in a sufficiently strong vertical magnetic field, whereas ent situations the surface deflectig(0,0) as a function of
both two-dimensional structures can be destabilized by inthe supercriticality parameter. Since the surface profiles
creasing the horizontal field induced anisotropy. {(x,y) were calculated under consideration of the higher

On the other hand in Fig. 5 particularly the stability re- harmonics, the following bifurcation diagrams are not mirror
gion of the three-mode solution is reduced by decreasing theymmetric for all solutions. This results from the broken up-
parametenu,, which rules the up-down symmetry breaking down symmetryZ(x,y)— — {(X,y) of the system.
in the system. To show that the relative permeabjlityde- The familiar bifurcation scenario for a fluid in a strictly
termines whether the arising peaftbe center of the cells vertical magnetic field is displayed in Fig. 6. In the diagram,

IV. BIFURCATIONS
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FIG. 6. Bifurcation diagram for a magnetic fluid wigh=1.3 in FIG. 7. Bifurcation diagram for the same fluid as in Fig. 6 but in

the absence of a horizontal magnetic fieldy&=0). The depen- the presence of a tilted magnetic field. Due to the horizontal field of
dence of the surface deflectidi0,0) on the supercriticality param- the constant valugdy=0.069H., parallel ridges are stable for
etere=HZ%/H2—1 is shown. Solid lines indicate stable surface pro- weakly supercritical field$i, . The lower branch of the ridge solu-
files and dashed lines indicate unstable solutions. The stablgons splits up at the point marked with the triangle. Since this
hexagons have in their center fluid peaks pointing upward. Thdranch describes the depth of the valleys between the ridges or
curve which belongs to the shifted hexagons describes the deflesimply the patterns displaced by/(2k) in they direction its fur-
tion £(0,0), if the three-mode solution is displaced by one wave-ther bifurcations can be deduced from the upper part of the diagram.
length./k in they direction.

from a subcritical to a supercritical bifurcation due to a de-
the range of the supercriticality parametecorresponds to  crease of the permeabilgy, was also found in Ref$20,21].
0.9985<H;/H.<1.0025in Fig. 4 Hx/H.=0). Ate=0the  The three-mode solutions lose stability at a saddle-node bi-
trivial solution splits up by two supercritical pitchfork bifur- furcation and rejoin the ridge branch, at which point the
cations into unstable two-mode solutions and unstablgidges regain stability. Eventually stable two-mode solutions
ridges. In contrast, the unstable three-mode solutions appepffurcate from the ridge branch. For horizontal fielbs

at a transcritical bifurcation. But only hexagons with fluid <(0.02734, this supercritical pitchfork bifurcation takes
peaks pointing upward are stable. The corresponding stable

branch disappears together with the unstable branch of the ¢.04
three-mode solutions for subcritical fieldd,<H. at a
saddle-node bifurcation. The dependence of the surface de

flection £(0,0) of the hexagonal patterns shifted by/k in 0.03
they-direction can be calculated by changing simultaneously
the sign of the amplitudesd; and A,. These three-mode Ly
solutions are topological identical to the unshifted hexagons. , 002} /.7
In Fig. 7 the bifurcation scenario is clearly changed by thes [ /=~
additional horizontal fieldHy=0.063H.. At e=0 only P Y 2
ridges appear from the trivial solution at a supercritical pitch-** ¢o1 | ridges

fork bifurcation. The corresponding solutions are initially
stable but lose stability at a subcritical pitchfork bifurcation
to the three-mode solutions. For larger valueHgfthe un- ot ]
stable branch of the ridges splits up at a supercritical pitch-
fork bifurcation into two unstable two-mode solutions, which
are both identical except for a translation by/(2q) in the ~0.01
x direction. Since the three-mode solutions bifurcate subcriti-
cally, the ridges and the three-mode solutions are simulta-
neously stable in a certain regi¢ef. Fig. 4). . FIG. 8. Bifurcation diagram for a magnetic fluid with small
For magnetic fluids with small permeability the impact of permeability,=1.03 in the presence of a tilted field. In the con-
the horizontal magnetic field becomes even more prosjgered case with the horizontal magnetic fielig=0.0273.., par-
nounced. In Fig. 8 two separate intervals for the vertical fieldjle| ridges are stable both for weakly supercritical fields and for
H; exist, in which ridges are stable. For the fluid wjifi  fields H,~1.003H,, (cf. Fig. 5. Due to the small relative perme-
=1.03 the ridges lose stability to the three-mode solutions adbility the three-mode solutions bifurcate supercritically from the
a supercritical pitchfork bifurcation. A corresponding changeridges.

3M (shifted)

0 0.002 0.0042 0.006 0.008
e=(H,/H ) -1
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place before the three-mode solutions rejoin the ridge brancfore conclude that even a slight disturbance of the rotational
so that a direct transition from a three-mode solution to asymmetry of a pattern forming system may lead to unex-

two-mode solution can be observéd. Fig. 5). pected planforms, especially if the up-down symmetry of the
system is only weakly broken. This is quite relevant, since
V. DISCUSSION the up-down symmetry breaking coefficient in the amplitude

] ] ) ) equations describing a pattern selection problem is usually
In this paper we have theoretically investigated the patterissymed to be small.

formation on a magnetic fluid subjected to a homogeneous The diverse bifurcation scenarios additionally demon-
magnetic field with arbitrary orientation. In contrast to pre-sirate how the transitions between patterns are influenced by
vious theoretical papefsi0—12, in which the existence of the horizontal magnetic field. The corresponding effects of
nonequilateral patterns was deduced from model amplitudgnisotropy on the general bifurcation structure of distorted
equations, we have studied the formation of stretched pahexagonal patterns were found earlier in REf2]. In a
terns by means of an energy minimization principle. Ourcomplementary study of a specific anisotropic system, the
quantitative results can be compared directly with correqifyrcations of patterns during directional solidification were
sponding experiments. o addressedl23]. However, the pattern forming system inves-
We have shown that the magnetic field induced surfacggated in the present paper has the considerable advantage
instability can result in parallel ridges and patterns periodignat 5 very precise measuring and tuning of the parameter
on a hexagonal, rhombic, square, or rectar_lgular lattice. Thigyat rules the up-down asymmetry, i.e., the relative perme-
rich spectrum of patterns and the fact that it can be exploregpjity, and the parameter that rules the left-right asymmetry,
by varying just the parameter of anisotropy, i.e., the horizon;j ¢  the horizontal magnetic field, should be feasible.
tal magnetic field, is to our knowledge unique. Solely the Finally, we note that in Fig. 3 the asymmetric peaks look
transition from hexagons via rhomboids to stripes could b&imilar to the drifting peaks discussed in REES]. Thus we
demonstrated so far in an anisotropic optical sysf@in close with the interesting question of whether the interplay of
In addition, we have found that the patterns that argjjssipation, the up-down asymmetry, and the left-right asym-
stretched in the direction of the horizontal magnetic f'e|dmetry caused by the tilted field can generate two-

lack any (nontrivial) rotational symmetry. For that reason gimensional drifting patterns. For compressible magnetocon-
these deformed but strictly periodic structures can be viewegection in an oblique magnetic field it was shown that the
as the counterparts of quasiperiodic pattd®§]. Unfortu-  compination of these asymmetries gives rise to traveling
nate_ly our Weakly nonlinear analysis is res_trlcted to the iN\vaves[24,25. A possible modification of the static setup
vestigation of slightly deformed patterns in a moderatelyconsidered in the present paper to a dynamic system might
tilted field. Though it is well known that a horizontal mag- pe g parametrically driven magnetic fluid in a vibrated vessel
netic field retards deformations of the flat surface of a magdf26] or a modulated magnetic fielth]. To describe these
netic fluid[13,22, the peaks resulting from the normal field onequilibrium systems our variational approach has to be

instability become larger if they are subjected additionally togytended taking into account the influence of inertia and
a horizontal fieldsee Fig. 3 This nonlinear effect basically gamping[18,27.

sets the limits of the presented perturbative investigation.
Nevertheless our study indicates that very oblique magnetic
fields may result in highly stretched patterns.

Moreover, our analysis reveals the role of the up-down We have greatly benefited from discussions with Bert
symmetry breaking in the anisotropic system. We have foundReimann and Reinhard Richter. Furthermore, we would like
a strong dependence of the pattern selection on the relative thank Andreas Engel for a critical reading of the manu-
permeabilityu, of the magnetic fluidcf. Figs. 4 and b In  script and Adrian Lange for some helpful hints. This work
particular, for |u,—1|<1 the stability of the patterns is was supported by the Deutsche Forschungsgemeinschaft un-
rather susceptible to perturbations of the isotropy. We thereder Project No. FOR 301/2-1.
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